Hydrogen, Lampoon
WORDS
REPORTING
TAG
BROWSING
Facebook
WhatsApp
Pinterest
LinkedIn
Email
twitter X

Lampoon / The Transition Issue: about Hydrogen, the enormity of scientific research

With Hydrogen expected to represent almost 25% of global energy end-uses by the year 2050 scientists are defining the energy carriers that will shape it 

Hydrogen: an energy carrier and the most abundant element of the universe

In Laboratory Life: The Construction of Scientific Facts (1979), French philosopher, anthropologist and sociologist Bruno Latour revealed along with his co-author Steve Woolgar, how scientific facts are produced in-situ, in the laboratory.

They studied a neuroendocrinology laboratory, like anthropologists analyzing the rituals of a tribe. The authors studied the way scientific work was conducted daily; through methodologies, routine coffee breaks, narrowing down possibilities, defining trajectories and protocols. Today, scientific evidence still guides the choices and trajectories that other fields take. This is one that will define our future.

Dr. Crema. «Hydrogen is an ideal choice for our ecosystems». He is an applied physicist with a background in matter physics and spends his time between research, innovation and technology development: «sensors, composting and biogas, renewable energies, including energy carriers such as Hydrogen and batteries».

A discovery by the English chemist Henry Cavendish

Hydrogen is a colorless and odorless gaseous element that was first discovered by the English chemist Henry Cavendish and has been known about since the seventeenth century. Nevertheless, Hydrogen was rapidly supplanted by electricity and natural gas for lighting and heating applications. Meanwhile, scientists in laboratories and researchers in automotive and aerospace industries have been working on this fuel for decades.

Today the aim to create a globally sustainable energy system requires Hydrogen. Dr Gençer has traced back to the original concepts surrounding the chemical element. He explains, «Hydrogen has been in the public imagination since the 1870s. Jules Verne wrote, in his novel The Mysterious Island, that ‘water will be the coal of the future’. The concept of Hydrogen has persisted in the public imagination for over a century, though interest in Hydrogen has been cyclical and changed over time. Initial conversations about Hydrogen focused on using it to supplement depleting fuel sources on Earth, but the role of Hydrogen is evolving. Now, we know that there is enough fuel on Earth, especially with the support of renewables. Hydrogen is considered as a tool for decarbonization».

Identifying optimal utilization of resources for the evolving energy system

Dr. Gençer. The central theme of Dr. Emre Gençer’s research is to identify optimal utilization of resources for the evolving energy system facing the dual challenge of increasing demand while profoundly reducing its environmental footprint. His research focuses on the integration of emerging and conventional energy technologies; their policy implications, multi-scale modeling, and optimization.

Hydrogen is «the most abundant element of the universe, present in water molecules and many others, but not available in nature as Hydrogen». Dr. Gençer explains: «Hydrogen is an energy carrier; it can store and deliver energy, it must be produced from compounds that contain it». Hydrogen is primarily used in industry to remove contaminants from diesel fuel and produce ammonia. It is also used in consumer vehicles with Hydrogen fuel cells, and countries like Japan are exploring its use in public transportation.

«Some of the work completed during my PhD in 2015 involved researching efficient Hydrogen production via solar, thermal and other renewable sources. This application of renewable energy is now coming back to the fore as we think about deep decarbonization. A wide range of processes can be used to produce Hydrogen, including thermochemical processes (natural gas reforming, coal, and biomass gasification), electrolytic processes (splitting water into Hydrogen and oxygen using electricity), photolytic processes (splitting water into Hydrogen and oxygen using direct sunlight), and biological processes».

Green Hydrogen

Dr. Crema explains: «It can be extracted from water using renewable energy through electrolysis, as green Hydrogen. It is mostly produced today by natural gas and by steam reforming processes (ninety percent of the Hydrogen today produced), as gray Hydrogen. If I capture and store the CO2 associated with the reforming process, the Hydrogen is called ‘blue Hydrogen’. It is produced using fossil fuels, but captures the carbon emissions».

«Green, gray or blue Hydrogen: they are the same molecule. There is no Hydrogen of a higher quality, apart from where purity level is concerned. Hydrogen is characterized by the way it is produced. Green when produced by renewables, gray when produced by natural gas, blue when produced capturing and storing carbon emissions. Green Hydrogen is the preferred way, and the most supported by the European Commission and related policy actions. In the next few years, it will become the cheaper way of producing it, using dedicated renewable energies and scaling up manufacturing of electrolyze technologies».

Dr. Gençer. After nuclear energy, «it has the highest specific energy of the universe to the best of our knowledge». Hydrogen yields water when consumed, it does not produce carbon dioxide (CO2) emissions, and can actually eliminate CO2 emissions in many of its end-use applications. Hydrogen production can have a significant environmental impact depending on how it is produced. Today, close to ninety-five percent of its production is from fossil fuel resources,such as natural gas and coal. As a consequence, 830 million tons of CO2 are emitted per year for the production of seventy-four million tons of Hydrogen.

A clean vector of energy without polluting emissions

Dr. Crema. It is a molecule, «so small, that no one can easily visualize it. We are modeling Hydrogen in electrochemical reactions, so that two atoms of Hydrogen react with one molecule of Oxygen generating two electrons. Hydrogen can enter into some electrochemical cells, and it can be predicted how it reacts with some structured materials in the cell, producing water and electricity. This is a fuel cell. Macroscopically, we can see a stack of cells and electric power coming from it, when the Hydrogen gas is delivered to it».

The minute scale of Hydrogen, as explained by Dr. Crema, allows us to be aware of our own relation to other microorganisms and chemical elements. Humans are part of larger atmospheres and ecosystems of breathing bodies. In an attempt to understand Hydrogen’s presence in our future, «we can experience Hydrogen at home, if provided through the gas grids, substituting natural gas. It has a transparent flame, so we need to take care of it (maybe there will be some colorants). We can experience it in fuel cell electric vehicles. Refueling it as with gasoline or diesel but for an electric vehicle. No more smog in our cities, in our industrial parks or districts».

When hydrogen is obtained by electric power produced by renewable energy

Carbon emissions and greenhouse gases are mostly associated with the use of fossil fuels. It is during their combustion that Carbon Dioxide (CO2) is emitted, while Hydrogen can be obtained by «water and electric power». In cases where electric power is produced by renewable energy (such as wind turbines or photovoltaics), «the energy carrier has zero carbon emissions. I can store it and use it during the night, when solar energy cannot power our homes, or produce it in summer and store until winter. If Hydrogen is then converted back to power using fuel cells, combining it with air (Oxygen), it gives back electric power (for cars, for industries, for any final use) and water. So, with zero polluting emissions, you could even breathe the air coming from the exhaust of a car. This places Hydrogen as a clean vector of energy without polluting emissions: no CO, no NOx, no Benzene, no Particulate, nothing. Just power and water».

Hydrogen economy

Dr. Gençer. The first ‘Hydrogen economy’ concept was introduced in the 1970s. The term refers to using Hydrogen as an energy carrier, mostly for the transportation sector. «Electricity requires a primary energy source and transmission lines to transmit electrons. In the case of Hydrogen, energy sources and transmission infrastructure are required to transport protons. Many countries today are already subsidizing projects in this area to achieve their net zero emissions targets. The climate crisis has been driving innovation in the field of sustainable energies for several years. One of the main challenges of renewables is their intermittent nature, since they depend mainly on weather conditions. The concept of decarbonization has slowly shaped the nature of geopolitics today. The term refers to the reduction or elimination of CO2 from energy sources».

About the decarbonization of the industry

Dr. Crema. «Decarbonization started with solutions to use renewable sources to support our final energy utilization. Renewables are mostly intermittent or variable by nature, so it is difficult to cover twenty-four hours long usage in mobility, industries or residential and commercial. There is a problem when renewables get a share of more than thirty percent of the final energy utilization. At that level, the power grid starts to become unstable and blackouts may occur. In this case, technology or chemicals are needed to store the energy that can be produced. It is possible to do this using battery, but it is costly and not adapted to heavy-duty transport and industry».

Dr. Crema. He first became interested in Hydrogen when he was working on the integration of Renewables for distributed level applications. He was working on the concept of small energy communities including the latest Hydrogen Valley projects, which are geographical areas – a city, a region, an island or an industrial cluster – where «several Hydrogen applications are combined together into an integrated Hydrogen ecosystem».

Hydrogen scenario analysis model

Dr. Gençer. «Scenario analysis is key to making better decisions. Energy systems modeling investigates the future. Projections are uncertain and oftentimes wrong. We need to understand the consequences of different choices. These choices can be technological investments, infrastructure planning. The only way to fully appreciate trade-offs between alternatives is to explore scenarios».

Dr. Crema. At that time, while working on modelling and simulating a one hundred percent independent community, he realized that it was not achievable without a storage solution. This is how he started to work on materials capable of storing Hydrogen at a high energy density. This then led him to discover technologies such as the Solid Oxide Cells that are able to convert power to Hydrogen and Hydrogen to power. «Using the same cell, it is possible to generate Hydrogen, store it in a solid material and convert it back into power depending on the need».

Converting a Hydrogen carrier at higher energy density into power

Today, his team is involved in most of the technologies along the Hydrogen value chain, supporting industries in their innovation. «We are a technology center converting our scientific output into new technologies on Hydrogen production, such as anionic exchange electrolyzis or reversible solid oxide cells. We are working with direct ammonia fuel cells, to convert a Hydrogen carrier at higher energy density into power. This could be of interest for the naval sector. We are starting research to produce ammonia by Hydrogen using high temperature cells. At the same time, we are involved in new components for the rail sector and designing new processes for heavy industries, such as the steel industry and refineries. We can mostly decarbonize these sectors by one hundred percent».

Hydrogen is at the forefront of several world agendas: «it can be the way we are going to produce part of our energy in the future. This will create a new sector to develop which will be associated with growth and wealth». The industrial chain will be involved: manufacturers of components, materials, subsystems, systems. Energy systems are «technologies associated with the way Hydrogen will be produced, transported and distributed, stored and finally utilized in all end uses».

Hydrogen, Lampoon
Nord Stream II pipe

Lampoon reporting: The Hydrogen economy

Dr Gençer. Hydrogen can enter four main end use sectors: industrial energy, industrial feedstock, residential/commercial energy and mobility. The first sectors Hydrogen will enter are those difficult to abate with other technologies, such as heavy-duty transport (trucks, trains, buses, segments C and D light duty vehicles). In all of these vehicles, Hydrogen is usually stored at high pressures (350 or 700 Bars), then moved to a fuel cell to be converted into power for an electric engine (the same as battery electric vehicles).

The Hydrogen car is an electric engine car. A small battery is usually necessary, together with an advanced power management system. In 2050, Hydrogen is expected to represent almost twenty-five percent of energy end uses, a quarter of all the energy we will be consuming. «A key barrier that needs to be overcome to enable this transition is the lack of Hydrogen infrastructure».

The race to commercialize fusion energy

Large investments such as the European version of the ‘Green new deal’ are planned to ensure continental infrastructure and gradually decarbonize industries, logistics and European public transport. Catalyzed by private-public sector partnerships, countries have started a race to commercialize fusion energy. Fusion energy is a reaction at high pressures involving Hydrogen, converting it into Helium and releasing heat. It is a reaction happening on the earth at a temperature of 150 million degrees.

Dr. Crema. «Sixty kilos of fusion fuel is equivalent to 250,000 tons of petrol. There is abundant fusion fuel on Earth to sustain us for millions of years». He also clarifies the role of Plasma: «Plasma is a conductive, ionized gas, known as the fourth state of matter beyond its gaseous, liquid and solid phases. On Earth, plasma is represented by lightning bolts or aurora borealis. Stars are made mostly from plasma. Fusion reactions are plasma. Fusion energy could be one of the sustainable ways we will be producing energy in our future (probably closer to 2100). It can complement the use of Renewables, providing base-load generation to our energy system».

Between Russia and Germany: The Nord Stream II pipeline

The Nord Stream II is a pipeline network (that will host Hydrogen and other gases) between Russia and Germany, it has been at the heart of transatlantic energy, borders and globalization. «In Italy, about seventy percent of the pipelines are compliant with the use of Hydrogen at one hundred percent. When moving to one hundred percent Hydrogen, we need to change pumping stations and some connections and fittings for the pipelines. We do not have to completely substitute the pipelines. We can start by blending the natural gas with Hydrogen in existing pipelines without changing almost anything up to ten percent Hydrogen mixtures, which in most cases can be leveraged to twenty percent. Beyond twenty percent, it is worth switching to one hundred percent Hydrogen in the gas grids».

The regulation of the sector of green gases including Hydrogen by the European Commission

With the Renewable Energy Directive RED II, the European Commission will regulate the sector of green gases including Hydrogen. «To introduce green Hydrogen at a reasonable rate, there must be good economics. This can be achieved in the medium to short-term when scaling up manufacturing of electrolyzers to the GW scale. In the recent Green Deal, within the H2020 program, the call for a one hundred MW Hydrogen production plant through electrolysers received sixteen proposals. This adds up to 1.6 GW electrolysers, when combined. It means there are several projects in Europe trying to promote large-scale electrolysis plants. Enough to reduce CAPEX to below 400 euros per Kw».

«A second direction is to introduce incentives or support schemes to reduce the cost of energy for electrolyzers. It should fall down to twenty-five to thirty-five euros per MWh to have economic Hydrogen production. This can be achieved if the electrolyser is directly connected to a cheap renewable source as in the north of Europe for wind, and in the South of Europe for solar energy. Regardless, we need to introduce support schemes so that, in cases where there is a short distance of a few kilometers between the Renewable power field and the electrolyser, there are no taxes included in the cost of energy. An interesting scheme is proposed within the German Hydrogen strategy: the program will pay Hydrogen project developers the difference between the EU carbon price and the actual cost of cutting emissions».

Hydrogen is still a fuel

Dr. Gençer. Hydrogen is «harmless and has zero carbon and polluting emissions. However, we need to be mindful of the fact that Hydrogen is still a fuel, it can thus burn or even explode. Considering Hydrogen has enough energy density when it is under pressure, it is usually stored at pressures higher than 200 Bars. Technologies must be developed following international safety standards, to limit the associated risks for end users». Hydrogen technologies are respecting the higher standards of safety, «including cylinders at 700 Bars in our cars. Hydrogen won’t be altering any equilibrium in the world and it won’t have any negative impact. We would be generating hydrogen from water then releasing it back to water again in a circular loop: fully sustainable. We should not impact our atmospheres and ecosystems irreversibly, because we don’t understand what the consequences are».

Sustainable Energy Systems Analysis Modeling Environment (SESAME)

There is a circular connection between the different disciplines that make use evolve and discover new things that are somewhat part of ourselves. This is in line with the philosophy behind Dr. Gençer’s Sustainable Energy Systems Analysis Modeling Environment (SESAME).«Today, climate change and associated energy system challenges are beyond one discipline’s capabilities. We need to work together and learn from each other. In the energy sector, we see a convergence of sub sectors: industry, electric power, transportation, and building. Each requires different expertize; unless we closely collaborate, we will end up making suboptimal decisions».

Energy resources, extractions and use have shaped the world’s geopolitics for the longest time. Hydrogen, a chemical element, in a way reveals the geopolitical realities of today. Dr. Crema identifies some of the issues that will shape our geographies. He explains that, «Hydrogen can be produced almost everywhere, with just solar or wind energy and at different costs in Germany, Saudi Arabia or the Arctic. There will be places where Hydrogen can be produced at cheaper costs. These places are where the solar radiation or wind energy are at a maximum. But logistic costs can mediate between different countries where Hydrogen can be economically produced».

Hydrogen production potential

Dr. Crema writes that within a ‘world where countries share between regions with high energy potential’, between countries where «Hydrogen production costs are low, such as Saudi Arabia or Chile» and «regions where demand of Hydrogen will be high such as Germany», there could be a new set of world geopolitics based on the Hydrogen production potential. In Laboratory Life: The Construction of Scientific Facts (1979), Latour and Woolgar identify the enormity of the research task. The book studies the long processes, frameworks and context that shape advancement in modern research.

Research is something that we, as humans, have always been engaged with. Research is the engine of our societal, technological and economic development. Sometimes, research is not considered as it should be. Probably because there is a gap between what is being researched and technological developments creating value for the markets. In the last year, we have seen an acceleration in the energy transition pathway and we are experiencing the need of the industrial sector to be supported by technology centers.

Dr. Emre Gençer

Is a research scientist at the Massachusetts Institute of Technology Energy Initiative (MITEI). He is leading the Energy Systems Modeling group at MITEI and he works shaping our understanding and use of Hydrogen.

Dr. Luigi Crema

Is the Director of the Centre Sustainable Energy at Fondazione Bruno Kessler. He is involved with Hydrogen as the vice president of the Italian Hydrogen Association, H2IT and board Member of Hydrogen Europe Research and he chairs the Technical Committee 1 on Hydrogen production

Ibrahim Kombarji

The writer does not work for, consult, own shares in or receive funding from any company or organization that would benefit from this article.

SHARE
Facebook
LinkedIn
Pinterest
Email
WhatsApp
twitter x
Silvia Prada, two boys

Silvia Prada and the joy of hiding out

Silvia Prada’s ‘fetishistic lens’ to explore the complexities of desire and representation – a conversation on the evolving landscape of queer music, fashion, history and what it means to be a true gay icon